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Analysis of Waveguide Discontinuities Using
Edge Elements in a Hybrid Mode Matching/Finite

Elements Approach
D. Arena, M. Ludovico, G. Manara, Senior Member, IEEE, and A. Monorchio, Member, IEEE

Abstract—A mode matching (MM)/finite element method
(FEM) for the analysis of waveguide discontinuities is presented.
The hybrid approach described combines the computational
efficiency of the modal analysis with the versatility and flexibility
of FEM and enables us to accurately model arbitrary cross
section waveguides, where modal expansions cannot be derived
analytically. The proposed procedure is based on the edge element
expansion of the transverse field components for the direct calcu-
lation of the coupling integrals involved in the MM formulation.
Numerical and experimental results are presented to show the
validity and the accuracy of the method.

Index Terms—Finite elements method, hybrid methods, mode
matching.

I. INTRODUCTION

DUE to its numerical efficiency, mode matching (MM)
analysis has been widely employed for designing wave-

guide components, such as transformers, polarizers, couplers,
filters, and multiplexers. This method is well-suited to handle
geometries where modal expansions of electromagnetic fields
can be derived analytically. Conversely, the finite element
method (FEM) is well-suited for the analysis of complex and
irregular structures, since it employs an unstructured mesh that
conforms to these geometries.

The objective of this paper is to present a hybrid scheme that
combines the above two methods in order to retain the advan-
tages of both techniques. In particular, MM is used all over that
part of the computational domain where an analytical solution is
known, while waveguides with arbitrary cross section are anal-
ized by means of a FEM approach. Examples of hybridization of
the two methods have been recently proposed in the literature.
In [1] and [2], a hybrid MM/FEM technique is proposed for ho-
mogeneous waveguide problems, based on a nodal functions ex-
pansion of scalar potentials [3]. In [4] and [5], an approach com-
bining MM with both two-dimensional (2-D) and three-dimen-
sional (3-D) formulations of FEM is introduced, using covariant
projection quadrilateral elements [6]. The aim of this work is
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Fig. 1. Waveguide stepped discontinuity problem.

to exploit the effectiveness and the accuracy of a different ap-
proach based on a standard Delaunay triangulation of the anal-
ysis domain and on the use of edge elements for the expansion
of the transverse field components. Edge elements have proven
effective for the calculation of waveguide eigenfunctions even
in the presence of dishomogeneities [7] and field singularities
[8]. In our case, Whitney’s elements are used in formulating the
FEM, providing a straightforward procedure for the calculation
of the coupling integrals involved in waveguide discontinuities
analysis.

II. FORMULATION

The geometry of the problem is depicted in Fig. 1. It
represents a boundary reduction discontinuity between a
standard (rectangular or circular) waveguide (region 1) and an
arbitrary cross section homogeneous waveguide (region 2). The
approach, however, can be easily generalized to every kind of
arbitrary cross section to arbitrary cross section waveguide step.
The aim is that of computing the generalized scattering matrix
(GSM) of the waveguide discontinuity. It can be obtained by
calculating the following integrals [9]

(1a)

(1b)

where
unit vector in the propagation direction;
electric vector eigenfunction of theth mode in theth
guide;
magnetic vector eigenfunction of theth mode in the
th guide;

cross section of theth guide.
We note that, while the field components in waveguide 1 can
be derived analytically, the modal expansions of fields in wave-
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guide 2 are calculated through a FEM solution of the Helmholtz
vector wave equation

(2)

In (2), denotes the two-dimensional gradient operating on
the coordinates of the transverse plane,is the free-space prop-
agation constant, is the phase constant along the-direction,
and coincides with either the transverse electric field or
the transverse magnetic field for and modes, re-
spectively. Air-filled ( and ) waveguides have
been assumed for the sake of simplicity.

The field is, therefore, expanded over the waveguide cross
section using the edge-based Whitney’s vector functions

. By introducing a set of test functions , after
some manipulations, we obtain the so-called weak form of
(2) that can be discretized by using a triangular grid and the
edge-based field expansion functions. Additionally, a Galerkin
procedure, i.e., , is employed. Assembly of
the element equations yields the global matrix equation system
[10]

(3)

where the entries of the matrices can be cast in the following
form

(4)

with representing the global numbering of edges. It is
apparent that (3) represents a standard generalized eigenvalue
problem. In particular, eigenvalues correspond to the square
of the modal transverse eigenvalues (cut-off numbers), while
eigenvectors denote the values of the transverse field along
the edges of the triangular mesh corresponding to the-th
mode. For modes ( ), the number of unknowns
equals that of global edges, whereas for modes ( )
the number of unknowns equals the number of inner edges,
being identically zero at boundary edges.

To keep advantage of the sparse nature of the generalized
eigenvalue problem (3), an implicitly restarted Arnoldi algo-
rithm [11] can be suitably employed in order to evaluate the
lowest nonvanishing eigenvalues and the corresponding eigen-
functions. This approach provides an approximated representa-
tion of modal fields and to be used in coupling integrals
calculation. Since transverse electric and magnetic fields are di-
rectly available for and modes respectively, (1) can be
rewritten as

(5a)

(5b)

(5c)

Fig. 2. Geometry of the junction under investigation (L = 20 mm, w =

6 mm,h = 4:5 mm).

The terms can be proved to be identically zero [12].
An analogue procedure can be used for the integrals de-
fined in (1b). Finally, we point out that, for evaluating the fre-
quency independent coupling integrals in (5), a standard Gauss
bidimensional quadrature formula, employing three points per
element can be satisfactorily used. A frequency sweep can be
obtained simply updating the multiplying factors depending on

.
Once the GSM of the single discontinuities have been evalu-

ated, the analysis of an overall component can be carried out as
a sequence of scattering matrix connections and reference plane
shifts.

It is worth observing that the accuracy of the MM/FEM anal-
ysis is mainly affected by two different factors, i) the number of
triangles constituting the mesh grid and their geometrical prop-
erties and ii) the number of modes used for representing the
fields at waveguides discontinuities.

In order to avoid the well-known problem of relative conver-
gence [13], we selected the appropriateand expansions
by means of the spectral criterion, briefly summarized by the
following points:

1) for each expansion ( and ) and for each side of
the discontinuity, modes are searched and ordered by in-
creasing cut-off frequency;

2) the number of modes is chosen in order to have approxi-
mately the same cut-off wave number for the highest
mode considered in each or expansion.

For nearly-uniform meshes, the following reference criterion
for determining the value of has been adopted

(6)

where is the average length of the edge constituting the mesh.
A value ranging from 0.5 to 0.7 must be assumed for. This ex-
pression relies on the consideration that the element size has to
be sufficiently small with respect to the smallest cut-off wave-
length of the relevant modes in order to interpolate correctly
tangential fields.

III. N UMERICAL RESULTS

Some numerical results are presented in this section to
demonstrate the effectiveness of the hybrid technique proposed.

As a first step, we analyzed the junction in Fig. 2, where
a standard WR75 rectangular waveguide is connected on both
sides to a ridged waveguide 20 mm long. The metallic ridge is
6 mm wide and has a height of 4.5 mm. The ridged waveguide
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Fig. 3. Amplitude and phase ofS versus frequency for the junction in Fig. 2.

Fig. 4. Transmission and reflection coefficients for the cross-iris coupled filter
(continuous line: calculatedS ; dashed line: calculatedS ; dots and triangles:
[13]).

has been meshed by using a triangular grid comprising 344 el-
ements with 550 edges (70 boundary edges). For the grid con-
sidered, the expression (6) gives a boundary of 2 mmfor the
value of . By selecting the modes according to the spectral
criterion and fixing mm , the first 50 modes
and 31 modes have been taken into account into the ridged
waveguide, while the first 55 modes and 40 modes have
been considered into the rectangular waveguide. Thescat-
tering parameter obtained in this case is plotted in Fig. 3. The
analysis has taken about 40 s for 20 frequency samples on a
250 MHz RISC processor of a SGI Origin 2000. To have a term
of comparison, the same structure has been analyzed with the
commercial software Ansoft HFSS, based on a full 3D FEM
formulation. A 3012 tetrahedral elements mesh was employed
and the required CPU time on the above-mentioned processor
was about 4 min for a 20 points fast-frequency sweep.

As a second example, in Fig. 4 we present the calculation
of the transmission and reflection coefficients of the WR 62
cross-iris coupled filter described in [14]. In this case, the cross
irises have been discretized using a mesh of 154 elements
(249 edges). The corresponding boundary was 2.2 mm

leading to 11 and 5 modes in the cross irises and,
consequently, 56 and 40 modes in the rectangular
waveguides. The accordance between measured and computed
parameters obtained for both the case-studies confirms the ac-
curacy and the effectiveness of the hybrid technique proposed.

IV. CONCLUSIONS

A hybrid technique for solving waveguide discontinuity prob-
lems has been presented; it employs an edge-based finite ele-
ment approach for determining modal expansions in the case of
arbitrary shaped waveguides and an MM procedure for the eval-
uation of the GSM of a discontinuity. Some numerical and ex-
perimental results have been reported in order to show the accu-
racy and the computational efficiency of the proposed method.
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